0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 GroundTermsRemoverProof (⇔)
↳6 ITRS
↳7 ITRStoIDPProof (⇔)
↳8 IDP
↳9 UsableRulesProof (⇔)
↳10 IDP
↳11 IDPNonInfProof (⇐)
↳12 AND
↳13 IDP
↳14 IDependencyGraphProof (⇔)
↳15 TRUE
↳16 IDP
↳17 IDependencyGraphProof (⇔)
↳18 TRUE
No human-readable program information known.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Load352(x1, x2, x3) → Load352(x2, x3)
Cond_Load352(x1, x2, x3, x4) → Cond_Load352(x1, x3, x4)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i29[0] →* i29[1])∧(i32[0] →* i32[1])∧(i32[0] > 1 && i29[0] + 1 > 0 →* TRUE))
(1) -> (0), if ((i32[1] / 2 →* i32[0])∧(i29[1] + 1 →* i29[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i29[0] →* i29[1])∧(i32[0] →* i32[1])∧(i32[0] > 1 && i29[0] + 1 > 0 →* TRUE))
(1) -> (0), if ((i32[1] / 2 →* i32[0])∧(i29[1] + 1 →* i29[0]))
(1) (i29[0]=i29[1]∧i32[0]=i32[1]∧&&(>(i32[0], 1), >(+(i29[0], 1), 0))=TRUE ⇒ LOAD352(i32[0], i29[0])≥NonInfC∧LOAD352(i32[0], i29[0])≥COND_LOAD352(&&(>(i32[0], 1), >(+(i29[0], 1), 0)), i32[0], i29[0])∧(UIncreasing(COND_LOAD352(&&(>(i32[0], 1), >(+(i29[0], 1), 0)), i32[0], i29[0])), ≥))
(2) (>(i32[0], 1)=TRUE∧>(+(i29[0], 1), 0)=TRUE ⇒ LOAD352(i32[0], i29[0])≥NonInfC∧LOAD352(i32[0], i29[0])≥COND_LOAD352(&&(>(i32[0], 1), >(+(i29[0], 1), 0)), i32[0], i29[0])∧(UIncreasing(COND_LOAD352(&&(>(i32[0], 1), >(+(i29[0], 1), 0)), i32[0], i29[0])), ≥))
(3) (i32[0] + [-2] ≥ 0∧i29[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD352(&&(>(i32[0], 1), >(+(i29[0], 1), 0)), i32[0], i29[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]i32[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(4) (i32[0] + [-2] ≥ 0∧i29[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD352(&&(>(i32[0], 1), >(+(i29[0], 1), 0)), i32[0], i29[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]i32[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(5) (i32[0] + [-2] ≥ 0∧i29[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD352(&&(>(i32[0], 1), >(+(i29[0], 1), 0)), i32[0], i29[0])), ≥)∧[(-1)bni_12 + (-1)Bound*bni_12] + [bni_12]i32[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(6) (i32[0] ≥ 0∧i29[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD352(&&(>(i32[0], 1), >(+(i29[0], 1), 0)), i32[0], i29[0])), ≥)∧[bni_12 + (-1)Bound*bni_12] + [bni_12]i32[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(7) (i29[0]=i29[1]∧i32[0]=i32[1]∧&&(>(i32[0], 1), >(+(i29[0], 1), 0))=TRUE∧/(i32[1], 2)=i32[0]1∧+(i29[1], 1)=i29[0]1 ⇒ COND_LOAD352(TRUE, i32[1], i29[1])≥NonInfC∧COND_LOAD352(TRUE, i32[1], i29[1])≥LOAD352(/(i32[1], 2), +(i29[1], 1))∧(UIncreasing(LOAD352(/(i32[1], 2), +(i29[1], 1))), ≥))
(8) (>(i32[0], 1)=TRUE∧>(+(i29[0], 1), 0)=TRUE ⇒ COND_LOAD352(TRUE, i32[0], i29[0])≥NonInfC∧COND_LOAD352(TRUE, i32[0], i29[0])≥LOAD352(/(i32[0], 2), +(i29[0], 1))∧(UIncreasing(LOAD352(/(i32[1], 2), +(i29[1], 1))), ≥))
(9) (i32[0] + [-2] ≥ 0∧i29[0] ≥ 0 ⇒ (UIncreasing(LOAD352(/(i32[1], 2), +(i29[1], 1))), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]i32[0] ≥ 0∧[1 + (-1)bso_18] + i32[0] + [-1]max{i32[0], [-1]i32[0]} ≥ 0)
(10) (i32[0] + [-2] ≥ 0∧i29[0] ≥ 0 ⇒ (UIncreasing(LOAD352(/(i32[1], 2), +(i29[1], 1))), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]i32[0] ≥ 0∧[1 + (-1)bso_18] + i32[0] + [-1]max{i32[0], [-1]i32[0]} ≥ 0)
(11) (i32[0] + [-2] ≥ 0∧i29[0] ≥ 0∧[2]i32[0] ≥ 0 ⇒ (UIncreasing(LOAD352(/(i32[1], 2), +(i29[1], 1))), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]i32[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(12) (i32[0] ≥ 0∧i29[0] ≥ 0∧[4] + [2]i32[0] ≥ 0 ⇒ (UIncreasing(LOAD352(/(i32[1], 2), +(i29[1], 1))), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]i32[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(13) (i32[0] ≥ 0∧i29[0] ≥ 0∧[2] + i32[0] ≥ 0 ⇒ (UIncreasing(LOAD352(/(i32[1], 2), +(i29[1], 1))), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]i32[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [3]
POL(LOAD352(x1, x2)) = [-1] + x1
POL(COND_LOAD352(x1, x2, x3)) = [-1] + x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(1) = [1]
POL(+(x1, x2)) = x1 + x2
POL(0) = 0
POL(2) = [2]
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(/(x1, 2)1 @ {LOAD352_2/0}) = max{x1, [-1]x1} + [-1]
COND_LOAD352(TRUE, i32[1], i29[1]) → LOAD352(/(i32[1], 2), +(i29[1], 1))
LOAD352(i32[0], i29[0]) → COND_LOAD352(&&(>(i32[0], 1), >(+(i29[0], 1), 0)), i32[0], i29[0])
COND_LOAD352(TRUE, i32[1], i29[1]) → LOAD352(/(i32[1], 2), +(i29[1], 1))
LOAD352(i32[0], i29[0]) → COND_LOAD352(&&(>(i32[0], 1), >(+(i29[0], 1), 0)), i32[0], i29[0])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
/1 →
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |